Machine Learning Ranking and INEX'05

Abstract

We present a Machine Learning based ranking model which can automatically learn its parameters using a training set of annotated examples composed of queries and relevance judgments on a subset of the document elements. Our model improves the performance of a baseline Information Retrieval system by optimizing a ranking loss criterion and combining scores computed from doxels and from their local structural context. We analyze the performance of our algorithm on CO-Focussed and CO-Thourough tasks and compare it to the baseline model which is an adaptation of Okapi to Structured Information Retrieval.

Publication
Advances in XML Information Retrieval and Evaluation, 4th International Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2005, Dagstuhl Castle, Germany, November 28-30, 2005, Revised Selected Papers